

Fast Response Ancillary Services

ERLDC, POSOCO

Load Following and Regulation

Frequency Profile - Different Time Scale

Utilization of existing hydro resources

- At the 13th Technical Committee Meeting of FOR POSOCO presented on the topic "Optimization of Hydro resources". Key highlights:
 - All-India Hydro installed capacity ~45 GW, of which about 12 GW are ISGS projects and balance are within the States
 - With optimum utilization, hydro can be significantly used for peaking demand
 - Can enhance PLF of thermal plants by ensuring hydro plants are not run during off-peak hours
 - States are also required to adopt aforementioned CERC principles in the state-level hydro tariff regulations

Endorsing the role of hydro plants

- Hydro generating stations are capable of providing a fast ramping capability
- Can be gainfully utilized for frequency regulation services to meet the system requirements
- The total energy despatched for hydro under FRAS is to be made zero and hence, no energy charges shall be payable
- A presentation on FRAS from Hydro Generators was made at the 63rd Meeting of FOR
- The Forum endorsed the recommendations of the Technical Committee for pilot studies on FRAS for Hydro, along with pilot studies on 5-Minutes Scheduling, Metering, Accounting and Settlement

Present Issues in Hydro Scheduling under RRAS

Need for fast regulation service and ramping support

Hydro: Energy limited
Resource
Thermal: Ramp limited

Resource

Other than power generation commitments

Marginal Cost is zero

And hence, FRAS Proposal...

SI No	Name	Utility	Region	Type (S/R/P)	I/C (MW)
1	Teesta-V		ER	Р	510
2	Rangit		EK	Р	60
3	Bairasiul			Р	180
4	Chamera-II			Р	300
5	Chamera-I			Р	540
6	Uri Stage – I			R	480
7	Salal	NHPC		R	690
8	Dhauliganga	NHPC		Р	280
9	Tanakpur			R	94.2
10	Chamera-III			Р	231
11	Parbati III		NR	Р	520
12	Sewa-II			Р	120
13	Dulhasti			Р	390
14	Uri Stage – II			R	240
15	Naptha Jhakri	SJVN		Р	1500
16	Rampur	21 4 14		Р	412
17	Tehri	THDC		S	1000
18	Koteshwar	IIIDC		S	400
19	Koldam	NTPC		Р	800
20	Kopili			S	200
21	Kopili-II	NEEPCO		S	25
22	Khandong	INLLFCO	NER	S	50
23	Ranganadi			Р	405
24	Loktak	NHPC		S	105
25	Pong			S	396
26	Dehar	ВВМВ	NR	R	990
27	Bhakra complex			S	1379
			Total		12297

ISGS Hydro Plants in different regions - their capacity and type

Туре	MW
Storage (S)	3555
RoR with	
Pondage (P)	6248
RoR (R)	2494
Total	12297

Proposal - Fast Response Ancillary Service (1)

- Stack of hydropower stations
 - Based on MW regulation possible by plant, balance energy etc.
 - Factoring congestion
- Despatch Instructions from Nodal Agency
 - FRAS Regulation Up (maximum available balance energy/reserve/MW)
 - FRAS Regulation Down (minimum available balance energy/reserve/MW)
 - Net energy squared off for each hydro station same day [Net energy $E_{net} = \sum E_{up} \sum E_{down}$ (in MWh) should be zero over the day]
 - Combination of FRAS Regulation Up and Down despatch instructions
- Only for short durations (≯5-6 dispatches in a day)
- Reservoir based stations priority over pondage based stations

Proposal - Fast Response Ancillary Service (2)

- Scheduling
 - 5 minute FRAS despatch schedules by Nodal Agency
 - Aggregated (3 five minute blocks)
 - Compatibility with the existing scheduling philosophy
 - Settlement and deviation accounting purposes
 - Regional Virtual Ancillary Entity Hydro or VAE-H
 - Counterparty to FRAS despatch instructions
- Accounting and Settlement
 - No fixed charge or variable charges to be paid
 - Incentive on mileage basis
 - $E_m = \Sigma \mid E_{up} \mid + \Sigma \mid E_{down} \mid$
 - To start with, 10p/kWh for both regulation UP & DOWN services

Triggering Criteria

- Hour boundary frequency changes
- Sudden changes in demand
- Ramp management
- Grid contingency

49.65

49.6 49.55

Fast Response Ancillary Services (e.g. Hydro station)

required to handle sharp changes in frequency

	Average Frequency:		49.997	Fraguen	cy Variatio	n Indov :	0.032	Standard	Deviation :	0.056		Mileage	45.61		
0.00	4.02	25.05	V.L.2	11.10	44.17	10.07	2.50	7522	200.00	45.52	25.05	50.00	2,,01	20.27	0.00
0.00	4.61	29.05	0.21	4.40	44.47	48.37	2.56	79.22	100.00	43.31	13.65	50.86	27.64	16.17	0.00
<49.7	<49.90	<49.97	49.7-49.8	49.8-49.9	49.9-50.0	50.0-50.1	50.1-50.2	49.90-50.05	49.7-50.2	49.97-50.03	50.05-50.1	>50	>50.03	>50.05	>50.2

Scheduling and Settlement

- FOR Technical Committee Sub-Group
 - Introduction of Five Minute Scheduling, Metering, Accounting and Settlement in Indian Electricity Market
 - Pilot Project Envisaged in Parallel with 15-Minute Framework
- Three Regions (NR, ER and NER) Central Sector Hydro Stations
 - 05 Minute Scheduling, 05 Minute Metering, 05 Minute Deviation Settlement

Data Exchanges

• NLDC/RLDCs with FRAS Providers

- Web based Automated Solution
- Technical Details for FRAS Despatch
- Telephonic/SMS/E-mail

FRAS Providers and RPCs

- Ancillary Services information
- Accounting & Settlement

Information on NLDC Website

- FRAS Instruction Summary
- Monthly report
- FRAS Providers details

NLDC RRAS Management

Avai	labl	e U	RS:

egions: ER: MER: MR: MR: WR: WR:

Generator	Ins. Cap.	Region	Var Cost	15:30	15:45	16:00	16:15	16:30	16:45	17:00	17:15	17:30	17:45	18:00	18:15	18:30	18:45
SIPAT-I	1980	WR	122	0	0	0	0	0	0	0	0	0	0	0	0	0	0
SIPAT-II	1000	WR	125	0	0	0	0	0	0	0	0	0	0	0	0	0	0
SINGRAULI	2000	NR	126	0	0	0	0	0	0	1.88	1.88	1.88	1.88	1.88	1.88	1.88	1.88
RIHAND3	1000	NR	127	45	45	79.87	79.87	79.87	79.87	0.03	0.03	0.03	80.94	80.94	80.94	80.94	80.94
RIHAND2	1000	NR	129	39	72.9	72.9	72.9	72.9	72.9	0.3	34.2	34.2	34.2	0.3	0.3	0.3	0.3
KSTPS-III	500	WR	129	0	0	0	0	0	0	0	0	0	0	0	0	0	0
KSTPS	2100	WR	131	0	0	0	0	0	0	0	0	0	0	0	0	0	0
CGPL	4150	WR	135	224	224	224	224	224	224	224	224	224	224	224	224	224	224
RIHAND1	1000	NR	144	0	0	0	0	13.55	0	0	0	0	0	0	0	0	0
TALST2	2000	SR	146	0	0	0	0	0	0	0	0	0	0	0	0	0	0
TSTPP-I	1000	ER	146	0	0	0	0	0	0	0	0	0	0	50	91.17	91.17	91.1
SASAN	3960	WR	153	76.5	76.5	76.5	76.5	76.5	76.5	0	0	0	0	0	0	0	0
VSTPS-III	1000	WR	153	0	0	0	0	0	0	0	0	0	0	0	0	0	0
VSTPS-V	500	WR	156	0	0	0	0	0	0	0	0	0	0	0	0	0	0
VSTPS-IV	1000	WR	157	0	0	0	0	0	0	0	0	0	0	0	0	0	0
AGTPP	130	AR	158	0	0	0	0	0	0	0	0	0	0	0	0	0	0
VSTPS-II	1000	WR	162	0	0	0	0	0	0	0	0	0	0	0	0	0	0
VSTPS-I	1260	WR	166	0	0	0	0	0	0	0	0	0	0	0	0	0	0
AGBPP	291	AR	179	0	0	0	0	0	0	0	0	0	0	0	0	0	0
KHSTPP-II	1500	ER	199	91.71	91.71	91.71	91.71	91.71	91.71	121.27	233.27	345.54	450.28	450.28	450.28	450.28	375.2
/ALLURNTECI	1500	SR	203	80.82	80.82	10.82	n	n	n	n	n	n	n	n	n	n	n

Discussion with Central Sector Hydro Generators

- ~osocu
- Meeting held on 09th March, 2018 at NLDC, Delhi
- Participants
 - CEA, NHPC, SJVN, BBMB, THDC, NEEPCO, NTPC and POSOCO
- Deliberations held & broad consensus achieved
 - FRAS Implementation
 - Primary Response improvement through droop settings
 - 5-Minute scheduling, despatch and settlement on pilot basis
 - Other ancillary services reactive power, black start
 - Need for fast communication of instructions
 - Mark up for regulation—to be decided by CERC

Information Requirement of Hydro Units

- Installed capacity of unit =P
- Start time; standstill to synchronization of unit to grid (in minutes)
- Minimum load at which unit stably run after synchronization (MW) P1
- Ramp rate (MW/min)
- Forbidden zone or high cavitation zone (From MW to MW) P2 to P3
- Maximum loading possible on unit (continuous) P4 (Note; range from P to P4 should be normally available for primary response unless it is a case of overflowing hydro)
- Cumecs/MW for P1, P3, P and P4 generation level as well as cumecs from standstill to synchronization. Which value is used for declaring MWh capability?
- How many units can be started simultaneously or is it sequential operation? The constraints in this regard.

Teesta-V HPS; Unit size 170 MW

Honouring Constraints

SOCO SOCO

- Drinking Water
- Irrigation
- Contractual Obligations with State Government
- Weather Phenomena, Monsoon etc.
- Legacy Control System
- Wildlife
- Water level and Head
- High Silt, flash floods, Cloud burst, Land slides
- Shortage of Skilled and Unskilled Manpower
- Acidic Corrosion and Erosion
- Special Occasions like Water Sport activities, Snan, Mela etc.
- Any other...

A Small Step for Hydro....

A Giant Leap for Indian Power System

